
acmqueue | september-october 2016 20

networks

B
y all accounts, today’s
Internet is not moving data
as well as it should. Most
of the world’s cellular
users experience delays of seconds to minutes;

public Wi-Fi in airports and conference venues is often
worse. Physics and climate researchers need to exchange
petabytes of data with global collaborators but find
their carefully engineered multi-Gbps infrastructure
often delivers at only a few Mbps over intercontinental
distances.6

These problems result from a design choice made
when TCP congestion control was created in the 1980s—
interpreting packet loss as “congestion.”13 This equivalence
was true at the time but was because of technology
limitations, not first principles. As NICs (network interface
controllers) evolved from Mbps to Gbps and memory chips
from KB to GB, the relationship between packet loss and
congestion became more tenuous.

Today TCP’s loss-based congestion control—even with
the current best of breed, CUBIC11—is the primary cause
of these problems. When bottleneck buffers are large,

NEAL CARDWELL

YUCHUNG CHENG

C. STEPHEN GUNN

SOHEIL HASSAS YEGANEH

VAN JACOBSON

1 of 34 TEXT
ONLY

BBR Congestion-Based
Congestion Control

Measuring
bottleneck
bandwidth

and round-trip
propagation

time

Xiqun
附注
2021年11月18日引用588次。

acmqueue | september-october 2016 21

networks

loss-based congestion control keeps them full, causing
bufferbloat. When bottleneck buffers are small, loss-
based congestion control misinterprets loss as a signal
of congestion, leading to low throughput. Fixing these
problems requires an alternative to loss-based congestion
control. Finding this alternative requires an understanding
of where and how network congestion originates.

CONGESTION AND BOTTLENECKS
At any time, a (full-duplex) TCP connection has exactly one
slowest link or bottleneck in each direction. The bottleneck
is important because:
3 It determines the connection’s maximum data-delivery
rate. This is a general property of incompressible flow (e.g.,
picture a six-lane freeway at rush hour where an accident
has reduced one short section to a single lane. The traffic
upstream of the accident moves no faster than the traffic
through that lane).
3 It’s where persistent queues form. Queues shrink only
when a link’s departure rate exceeds its arrival rate. For a
connection running at maximum delivery rate, all links
upstream of the bottleneck have a faster departure rate so
their queues migrate to the bottleneck.

Regardless of how many links a connection traverses
or what their individual speeds are, from TCP’s viewpoint
an arbitrarily complex path behaves as a single link with
the same RTT (round-trip time) and bottleneck rate. Two
physical constraints, RTprop (round-trip propagation
time) and BtlBw (bottleneck bandwidth), bound transport
performance. (If the network path were a physical pipe,

2 of 34

acmqueue | september-october 2016 22

networks

RTprop would be its length and BtlBw its minimum
diameter.)

Figure 1 shows RTT and delivery rate variation with
the amount of data in flight (data sent but not yet
acknowledged). Blue lines show the RTprop constraint,

3 of 34

RTprop

ro
un

d-
tr

ip
 ti

m
e

app limited bandwidth limited
buffer
limited

BtlBw

loss-based
congestion

control
operates here

optimum
operating

point
is here

BDP
BDP+

BtlneckBufSize

amount inflight

de
liv

er
y

ra
te

slope = 1 /
BtlBw

slo
pe

 =
1 /

 R
Tp

ro
p

FIGURE 1: delivery rate and round-trip time vs. inflight

1

acmqueue | september-october 2016 23

networks

green lines the BtlBw constraint, and red lines the
bottleneck buffer. Operation in the shaded regions isn’t
possible since it would violate at least one constraint.
Transitions between constraints result in three different
regions (app-limited, bandwidth-limited, and buffer-
limited) with qualitatively different behavior.

When there isn’t enough data in flight to fill the pipe,
RTprop determines behavior; otherwise, BtlBw dominates.
Constraint lines intersect at inflight = BtlBw × RTprop, a.k.a.
the pipe’s BDP (bandwidth-delay product). Since the pipe
is full past this point, the inflight – BDP excess creates
a queue at the bottleneck, which results in the linear
dependence of RTT on inflight data shown in the upper
graph. Packets are dropped when the excess exceeds the
buffer capacity. Congestion is just sustained operation
to the right of the BDP line, and congestion control is
some scheme to bound how far to the right a connection
operates on average.

Loss-based congestion control operates at the right edge
of the bandwidth-limited region, delivering full bottleneck
bandwidth at the cost of high delay and frequent packet loss.
When memory was expensive buffer sizes were only slightly
larger than the BDP, which minimized loss-based congestion
control’s excess delay. Subsequent memory price decreases
resulted in buffers orders of magnitude larger than ISP link
BDPs, and the resulting bufferbloat yielded RTTs of seconds
instead of milliseconds.9

The left edge of the bandwidth-limited region is a better
operating point than the right. In 1979 Leonard Kleinrock16
showed this operating point was optimal, maximizing
delivered bandwidth while minimizing delay and loss, both

4 of 34

acmqueue | september-october 2016 24

networks

for individual connections and for the network as a whole8.
Unfortunately, around the same time Jeffrey M. Jaffe14
proved it was impossible to create a distributed algorithm
that converged to this operating point. This result changed
the direction of research from finding a distributed
algorithm that achieved Kleinrock’s optimal operating
point to investigating different approaches to congestion
control.

Our group at Google spends hours each day examining
TCP packet header captures from all over the world, making
sense of behavior anomalies and pathologies. Our usual first
step is finding the essential path characteristics, RTprop and
BtlBw. That these can be inferred from traces suggests that
Jaffe’s result might not be as limiting as it once appeared.
His result rests on fundamental measurement ambiguities
(e.g., whether a measured RTT increase is caused by a path-
length change, bottleneck bandwidth decrease, or queuing
delay increase from another connection’s traffic). Although
it is impossible to disambiguate any single measurement,
a connection’s behavior over time tells a clearer story,
suggesting the possibility of measurement strategies
designed to resolve ambiguity.

Combining these measurements with a robust servo
loop using recent control systems advances12 could result
in a distributed congestion-control protocol that reacts
to actual congestion, not packet loss or transient queue
delay, and converges with high probability to Kleinrock’s
optimal operating point. Thus began our three-year quest
to create a congestion control based on measuring the
two parameters that characterize a path: bottleneck
bandwidth and round-trip propagation time, or BBR.

5 of 34

acmqueue | september-october 2016 25

networks

CHARACTERIZING THE BOTTLENECK
A connection runs with the highest throughput and lowest
delay when (rate balance) the bottleneck packet arrival
rate equals BtlBw, and (full pipe) the total data in flight is
equal to the BDP (= BtlBw × RTprop).

The first condition guarantees that the bottleneck can
run at 100 percent utilization. The second guarantees
there is enough data to prevent bottleneck starvation but
not overfill the pipe. The rate balance condition alone does
not ensure there is no queue, only that it can’t change size
(e.g., if a connection starts by sending its 10-packet Initial
Window into a five-packet BDP, then runs at exactly the
bottleneck rate, five of the 10 initial packets fill the pipe so
the excess forms a standing queue at the bottleneck that
cannot dissipate). Similarly, the full pipe condition does not
guarantee there is no queue (e.g., a connection sending a
BDP in BDP/2 bursts gets full bottleneck utilization, but
with an average queue of BDP/4). The only way to minimize
the queue at the bottleneck and all along the path is to
meet both conditions simultaneously.

BtlBw and RTprop vary over the life of a connection, so
they must be continuously estimated. TCP currently tracks
RTT (the time interval from sending a data packet until it is
acknowledged) since it’s required for loss detection. At any
time t,

where 𝛈 ≥ 0 represents the “noise” introduced by queues
along the path, the receiver’s delayed ack strategy,
ack aggregation, etc. RTprop is a physical property of
the connection’s path and changes only when the path

6 of 34

acmqueue | september-october 2016 26

networks

changes. Since path changes happen on time scales >>
RTprop, an unbiased, efficient estimator at time T is

I.e., a running min over time window WR (which is typically
tens of seconds to minutes).

Unlike RTT, nothing in the TCP spec requires
implementations to track bottleneck bandwidth, but a
good estimate results from tracking delivery rate. When
the ack for some packet arrives back at the sender, it
conveys that packet’s RTT and announces the delivery of
data inflight when that packet departed. Average delivery
rate between send and ack is the ratio of data delivered
to time elapsed: deliveryRate = Δdelivered/Δt. This rate
must be ≤ the bottleneck rate (the arrival amount is known
exactly so all the uncertainty is in the Δt, which must be
≥ the true arrival interval; thus, the ratio must be ≤ the
true delivery rate, which is, in turn, upper-bounded by
the bottleneck capacity). Therefore, a windowed-max of
delivery rate is an efficient, unbiased estimator of BtlBw:

where the time window WB is typically six to ten RTTs.
TCP must record the departure time of each packet to

compute RTT. BBR augments that record with the total
data delivered so each ack arrival yields both an RTT and
a delivery rate measurement that the filters convert to
RTprop and BtlBw estimates.

Note that these values are completely independent:

7 of 34

acmqueue | september-october 2016 27

networks

RTprop can change (for example, on a route change) but
still have the same bottleneck, or BtlBw can change (for
example, when a wireless link changes rate) without
the path changing. (This independence is why both
constraints have to be known to match sending behavior
to delivery path.) Since RTprop is visible only to the left
of BDP and BtlBw only to the right in figure 1, they obey
an uncertainty principle: whenever one can be measured,
the other cannot. Intuitively, this is because the pipe has
to be overfilled to find its capacity, which creates a queue
that obscures the length of the pipe. For example, an
application running a request/response protocol might
never send enough data to fill the pipe and observe
BtlBw. A multi-hour bulk data transfer might spend its
entire lifetime in the bandwidth-limited region and have
only a single sample of RTprop from the first packet’s
RTT. This intrinsic uncertainty means that in addition to
estimators to recover the two path parameters, there
must be states that track both what can be learned at
the current operating point and, as information becomes
stale, how to get to an operating point where it can be
relearned.

MATCHING THE PACKET FLOW TO THE DELIVERY PATH
The core BBR algorithm has two parts:

When an ack is received
Each ack provides new RTT and delivery rate
measurements that update the RTprop and BtlBw
estimates:

8 of 34

acmqueue | september-october 2016 28

networks

function onAck(packet)
 rtt = now - packet.sendtime
 update_min_filter(RTpropFilter, rtt)
 delivered += packet.size
 delivered_time = now
 deliveryRate = (delivered - packet.delivered)
 /(now - packet.delivered_time)
 if (deliveryRate > BtlBwFilter.currentMax
 || ! packet.app_limited)
 update_max_filter(BtlBwFilter,
 deliveryRate)
 if (app_limited_until > 0)
 app_limited_until - = packet.size

The if checks address the uncertainty issue described
in the last paragraph: senders can be application limited,
meaning the application runs out of data to fill the network.
This is quite common because of request/response traffic.
When there is a send opportunity but no data to send,
BBR marks the corresponding bandwidth sample(s) as
application limited (see send() pseudocode to follow). The
code here decides which samples to include in the bandwidth
model so it reflects network, not application, limits. BtlBw
is a hard upper bound on the delivery rate so a measured
delivery rate larger than the current BtlBw estimate must
mean the estimate is too low, whether or not the sample
was app-limited. Otherwise, application-limited samples
are discarded. (Figure 1 shows that in the app-limited region
deliveryRate underestimates BtlBw. These checks
prevent filling the BtlBw filter with underestimates, which
would cause data to be sent too slowly.)

9 of 34

acmqueue | september-october 2016 29

networks

When data is sent
To match the packet-arrival rate to the bottleneck link’s
departure rate, BBR paces every data packet. BBR
must match the bottleneck rate, which means pacing is
integral to the design and fundamental to operation—
pacing_rate is BBR’s primary control parameter. A
secondary parameter, cwnd_gain, bounds inflight to a
small multiple of the BDP to handle common network and
receiver pathologies (see the later section on Delayed and
Stretched ACKs). Conceptually, the TCP send routine looks
like the following code. (In Linux, sending uses the efficient
FQ/pacing queuing discipline,4 which gives BBR line-rate
single-connection performance on multigigabit links and
handles thousands of lower-rate paced connections with
negligible CPU overhead.)

function send(packet)
 bdp = BtlBwFilter.currentMax
 * RTpropFilter.currentMin
 if (inflight >= cwnd_gain * bdp)
 // wait for ack or timeout
 return
 if (now >= nextSendTime)
 packet = nextPacketToSend()
 if (! packet)
 app_limited_until = inflight
 return
 packet.app_limited =
 (app_limited_until > 0)
 packet.sendtime = now
 packet.delivered = delivered

10 of 34

acmqueue | september-october 2016 30

networks

 packet.delivered_time = delivered_time
 ship(packet)
 nextSendTime = now + packet.size /
 (pacing_gain *
 BtlBwFilter.currentMax)
 timerCallbackAt(send, nextSendTime)

Steady-state behavior
The rate and amount BBR sends is solely a function of
the estimated BtlBw and RTprop, so the filters control
adaptation in addition to estimating the bottleneck
constraints. This creates the novel control loop shown in
figure 2, which illustrates the RTT (blue), inflight (green)
and delivery rate (red) detail from 700 ms of a 10-Mbps,
40-ms flow. The thick gray line above the delivery-rate
data is the state of the BtlBw max filter. The triangular
structures result from BBR cycling pacing_gain to
determine if BtlBw has increased. The gain used for each
part of the cycle is shown time-aligned with the data it
influenced. The gain is applied an RTT earlier, when the
data is sent. This is indicated by the horizontal jog in the
event sequence description running up the left side.

BBR minimizes delay by spending most of its time with
one BDP in flight, paced at the BtlBw estimate. This moves
the bottleneck to the sender so it can’t observe BtlBw
increases. Consequently, BBR periodically spends an RTprop
interval at a pacing_gain > 1, which increases the sending
rate and inflight. If BtlBw hasn’t changed, then a queue
is created at the bottleneck, increasing RTT, which keeps
deliveryRate constant. (This queue is removed by sending
at a compensating pacing_gain < 1 for the next RTprop.) If

11 of 34

acmqueue | september-october 2016 31

networks

BtlBw has increased, deliveryRate increases and the
new max immediately increases the BtlBw filter output,
increasing the base pacing rate. Thus, BBR converges to the
new bottleneck rate exponentially fast. Figure 3 shows the
effect on a 10-Mbps, 40-ms flow of BtlBw abruptly doubling
to 20 Mbps after 20 seconds of steady operation (top graph)
then dropping to 10 Mbps after another 20 seconds of

1.00 1.00 1.00 1.00 1.00 1.25 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.25 0.75 1.00 1.00
cycle gain

gain > 1 so
inflight increases

pipe full so RTT
increases with inflight

(queue created)

3.8 4.0 4.2 4.4
Time (sec.)

BW
 (M

bp
s)

in
fl

ig
ht

 (k
B)

RT
T

(m
s)

ack arrival adds sample
to BtlBw max filter

ack from send updates filter one RTT later
 max BtlBw × cycle gain

used as sending rate

8.75
9.00
9.25
9.50

45

50

55

60

42.5
45.0
47.5

50.0
52.5

FIGURE 2: RTT (blue), Inflight (green) and Delivery rate (RED) detail

12 of 34

2

acmqueue | september-october 2016 32

networks

steady operation at 20 Mbps (bottom graph).
(BBR is a simple instance of a Max-plus control system,

a new approach to control based on nonstandard algebra.12
This approach allows the adaptation rate [controlled by
the max gain] to be independent of the queue growth
[controlled by the average gain]. Applied to this problem,
it results in a simple, implicit control loop where the
adaptation to physical constraint changes is automatically
handled by the filters representing those constraints. A
conventional control system would require multiple loops
connected by a complex state machine to accomplish the
same result.)

SINGLE BBR FLOW STARTUP BEHAVIOR
Existing implementations handle events such as startup,
shutdown, and loss recovery with event-specific algorithms
and many lines of code. BBR uses the code detailed earlier
(in the previous section, Matching the Packet Flow to
the Delivery Path) for everything, handling events by
sequencing through a set of “states” that are defined by a
table containing one or more fixed gains and exit criteria.
Most of the time is spent in the ProbeBW state described in
the section on Steady-state Behavior. The Startup and Drain
states are used at connection start (figure 4). To handle
Internet link bandwidths spanning 12 orders of magnitude,
Startup implements a binary search for BtlBw by using
a gain of 2/ln2 to double the sending rate while delivery
rate is increasing. This discovers BtlBw in log2BDP RTTs
but creates up to 2BDP excess queue in the process. Once
Startup finds BtlBw, BBR transitions to Drain, which uses
the inverse of Startup’s gain to get rid of the excess queue,

13 of 34

acmqueue | september-october 2016 33

networks

estimate
doubled and
pipe full

BtlBw doubled
to 20Mbps

BW
 es

tim
at

e

inc
re

as
es

 1.9
5x

(=
1.2

53
) in

 3
cy

cl
es

BtlBw halved;
inflight doesn’t
fit in pipe,
increasing RTT

inflight increases,
pushing up RTT, until
clamped by cwnd_gain

20Mbps BtlBw
times out of filter

inflight reduction
lowers RTT which
lowers inflight…

until optimum
regained

in
fl

ig
ht

 (k
B)

RT

T
(m

s)

in
fl

ig
ht

 (k
B)

RT

T
(m

s)

Time (sec.)
40 41 42 43 44

19 20 21 22

50

100

150

200

40

60

80

100

120
inflight
RTT

Time (sec.)

FIGURE 3: Bandwidth change

14 of 34

3

acmqueue | september-october 2016 34

networks

then to ProbeBW once the inflight drops to a BDP.
Figure 4 shows the first second of a 10-Mbps, 40-ms

BBR flow. The time/sequence plot shows the sender
(green) and receiver (blue) progress vs. time. The red line
shows a CUBIC sender under identical conditions. Vertical
gray lines mark BBR state transitions. The lower figure
shows the RTT of the two connections vs. time. Note that
the time reference for this data is ack arrival (blue) so,

CUBIC switches from
exponential to linear
inflight growth

BBR operating
at full BW with
no queue

cwnd_gain clamps
BBR inflight at 3 BDP

RTprop

startup drain probe BW

0 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

da
ta

 se
nt

 o
r a

ck
ed

 (M
B)

0 0.25 0.50 0.75 1.00
time (sec.)

time (sec.)

40
60
80

100
120

RT
T

(m
s)

FIGURE 4: First second of a 10-Mbps, 40-ms BBR flow

15 of 34

4

acmqueue | september-october 2016 35

networks

while they appear to be time shifted, events are shown at
the point where BBR learns of them and acts.

The lower graph of figure 4 contrasts BBR and CUBIC.
Their initial behavior is similar, but BBR completely drains
its startup queue while CUBIC can’t. Without a path model
to tell it how much of the inflight is excess, CUBIC makes
inflight growth less aggressive, but growth continues until
either the bottleneck buffer fills and drops a packet or the
receiver’s inflight limit (TCP’s receive window) is reached.

Figure 5 shows RTT behavior during the first eight
seconds of the connections shown in figure 4. CUBIC
(red) fills the available buffer, then cycles from 70 to 100
percent full every few seconds. After startup, BBR (green)
runs with essentially no queue.

packet loss and
recovery episodes

bottleneck’s 250 ms
buffer limit

RTprop
0 2 4 6 8

time (sec.)

100

200

300

400

500

RT
T

(m
s)

FIGURE 5: First 8 seconds of 10-Mbps, 40-ms CUBIC and BBR flows

16 of 34

5

acmqueue | september-october 2016 36

networks

MULTIPLE BBR FLOWS SHARING A BOTTLENECK
Figure 6 shows how individual throughputs for several BBR
flows sharing a 100-Mbps/10-ms bottleneck converge to a
fair share. The downward facing triangular structures are
connection ProbeRTT states whose self-synchronization
accelerates final convergence.

ProbeBW gain cycling (figure 2) causes bigger flows to
yield bandwidth to smaller flows, resulting in each learning
its fair share. This happens fairly quickly (a few ProbeBW
cycles), though unfairness can persist when late starters
overestimate RTprop as a result of starting when other
flows have (temporarily) created a queue.

To learn the true RTProp, a flow moves to the left of
BDP using ProbeRTT state: when the RTProp estimate has
not been updated (i.e., by measuring a lower RTT) for many
seconds, BBR enters ProbeRTT, which reduces the inflight

fair
share

0 10 20 4030 50
time (sec.)

0

20

40

60

80

th
ro

ug
hp

ut
 (M

bp
s)

FIGURE 6: Throughputs of 5 BBR flows sharing a bottleneck

17 of 34

6

acmqueue | september-october 2016 37

networks

to four packets for at least one round trip, then returns
to the previous state. Large flows entering ProbeRTT
drain many packets from the queue, so several flows see a
new RTprop (new minimum RTT). This makes their RTprop
estimates expire at the same time, so they enter ProbeRTT
together, which makes the total queue dip larger and
causes more flows to see a new RTprop, and so on. This
distributed coordination is the key to both fairness and
stability.

BBR synchronizes flows around the desirable event
of an empty bottleneck queue. By contrast, loss-based
congestion control synchronizes around the undesirable
events of periodic queue growth and overflow, amplifying
delay and packet loss.

GOOGLE B4 WAN DEPLOYMENT EXPERIENCE
Google’s B4 network is a high-speed WAN (wide-area
network) built using commodity switches.15 Losses on
these shallow-buffered switches result mostly from
coincident arrivals of small traffic bursts. In 2015 Google
started switching B4 production traffic from CUBIC to
BBR. No issues or regressions were experienced, and
since 2016 all B4 TCP traffic uses BBR. Figure 7 shows one
reason for switching: BBR’s throughput is consistently
2 to 25 times greater than CUBIC’s. We had expected
even more improvement but discovered that 75 percent
of BBR connections were limited by the kernel’s TCP
receive buffer, which the network operations team had
deliberately set low (8 MB) to prevent CUBIC flooding the
network with megabytes of excess inflight (8-MB/200-
ms intercontinental RTT ⇒ 335-Mbps max throughput).

18 of 34

acmqueue | september-october 2016 38

networks

Manually raising the receive buffer on one US-Europe path
caused BBR immediately to reach 2 Gbps, while CUBIC
remained at 15 Mbps—the 133x relative improvement
predicted by Mathis et al.17

Figure 7 shows BBR vs. CUBIC relative throughput

○

○

○

○

○

○
○
○
○
○○
○
○○

○○○
○○○○○○○○○○○○○○

○○
○○○ ○

○ ○ ○
○

○
2x improvement

5 20 5010 200100 500 20001000 5000
CUBIC throughput (Mbps) – log scale

0

51 20 100 500 5000
throughput (Mbps) – log scale

4

2

6

8

12

10

20

18

16

1.00

0.75

0.50

0.25

BBR
CUBIC

0

14

BB
R

th
ro

ug
hp

ut
 / C

U
BI

C
th

ro
ug

hp
ut

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

FIGURE 7: BBR vs. CUBIC relative throughput improvement

19 of 34

7

acmqueue | september-october 2016 39

networks

improvement; the inset shows throughput CDFs
(cumulative distribution functions). Measures are from
an active prober service that opens persistent BBR and
CUBIC connections to remote data centers, then transfers
8 MB of data every minute. Probers communicate via many
B4 paths within and between North America, Europe, and
Asia.

The huge improvement is a direct consequence of BBR
not using loss as a congestion indicator. To achieve full
bandwidth, existing loss-based congestion controls require
the loss rate to be less than the inverse square of the BDP17
(e.g., < one loss per 30 million packets for a 1-Gbps/100-ms
path). Figure 8 compares measured goodput at various
loss rates. CUBIC’s loss tolerance is a structural property
of the algorithm, while BBR’s is a configuration parameter.
As BBR’s loss rate approaches the ProbeBW peak gain, the
probability of measuring a delivery rate of the true BtlBw
drops sharply, causing the max filter to underestimate.

Figure 8 shows BBR vs. CUBIC goodput for 60-second
flows on a 100-Mbps/100-ms link with 0.001 to 50 percent
random loss. CUBIC’s throughput decreases by 10 times
at 0.1 percent loss and totally stalls above 1 percent.
The maximum possible throughput is the link rate times
fraction delivered (= 1 - lossRate). BBR meets this limit up
to a 5 percent loss and is close up to 15 percent.

YOUTUBE EDGE DEPLOYMENT EXPERIENCE
BBR is being deployed on Google.com and YouTube video
servers. Google is running small-scale experiments
in which a small percentage of users are randomly
assigned either BBR or CUBIC. Playbacks using BBR

20 of 34

acmqueue | september-october 2016 40

networks

show significant improvement in all of YouTube’s quality-
of-experience metrics, possibly because BBR’s behavior
is more consistent and predictable. BBR only slightly
improves connection throughput because YouTube already
adapts the server’s streaming rate to well below BtlBw
to minimize bufferbloat and rebuffer events. Even so, BBR
reduces median RTT by 53 percent on average globally and
by more than 80 percent in the developing world. Figure 9
shows BBR vs. CUBIC median RTT improvement from more
than 200 million YouTube playback connections measured
on five continents over a week.

More than half of the world’s 7 billion mobile Internet
subscriptions connect via 8- to 114-kbps 2.5 G systems,5
which suffer well-documented problems because of loss-
based congestion control’s buffer-filling propensities.3
The bottleneck link for these systems is usually between

0.001 0.01 0.1 1 2 5 10 20 30 50
loss rate (%) – log scale

0

25

50

75

100

th
ro

ug
hp

ut
 (M

bp
s)

FIGURE 8: BBR vs. CUBIC goodput under loss

21 of 34

8

acmqueue | september-october 2016 41

networks

the SGSN (serving GPRS support node)18 and mobile
device. SGSN software runs on a standard PC platform
with ample memory, so there are frequently megabytes
of buffer between the Internet and mobile device. Figure
10 compares (emulated) SGSN Internet-to-mobile delay
for BBR and CUBIC. The horizontal lines mark one of the
more serious consequences: TCP adapts to long RTT delay
except on the connection initiation SYN packet, which has
an OS-dependent fixed timeout. When the mobile device
is receiving bulk data (e.g., from automatic app updates)
via a large-buffered SGSN, the device can’t connect to
anything on the Internet until the queue empties (the SYN
ACK accept packet is delayed for longer than the fixed SYN
timeout).

Figure 10 shows steady-state median RTT variation with
link buffer size on a 128-Kbps/40-ms link with eight BBR

0 21 3 4 5 6 7 8 9 10
CUBIC RTT (sec.)

1

2

3

4

5

CU
BI

C
RT

T
/ B

BR
 R

TT

FIGURE 9: BBR vs. CUBIC median RTT improvement

22 of 34

9

acmqueue | september-october 2016 42

networks

(green) or CUBIC (red) flows. BBR keeps the queue near its
minimum, independent of both bottleneck buffer size and
number of active flows. CUBIC flows always fill the buffer,
so the delay grows linearly with buffer size.

MOBILE CELLULAR ADAPTIVE BANDWIDTH
Cellular systems adapt per-subscriber bandwidth based
partly on a demand estimate that uses the queue of
packets destined for the subscriber. Early versions of
BBR were tuned to create very small queues, resulting in
connections getting stuck at low rates. Raising the peak
ProbeBW pacing_gain to create bigger queues resulted in
fewer stuck connections, indicating that it’s possible to be
too nice to some networks. With the current 1.25 × BtlBw
peak gain, no degradation is apparent compared with
CUBIC on any network.

FIGURE 10: Steady-state median RTT variation with link buffer size

0.750.15 1.5

new connections fail in Linux / Android

new connections fail in Windows / Mac OS / iOS

3 6 10
buffer (MB)

0

200

400

600

la
te

nc
y

(s
ec

.)

23 of 34

10

acmqueue | september-october 2016 43

networks

DELAYED AND STRETCHED ACKS
Cellular, Wi-Fi, and cable broadband networks often
delay and aggregate ACKs.1 When inflight is limited to one
BDP, this results in throughput-reducing stalls. Raising
ProbeBW’s cwnd_gain to two allowed BBR to continue
sending smoothly at the estimated delivery rate, even
when ACKs are delayed by up to one RTT. This largely
avoids stalls.

TOKEN-BUCKET POLICERS
BBR’s initial YouTube deployment revealed that most of
the world’s ISPs mangle traffic with token-bucket policers.7
The bucket is typically full at connection startup so BBR
learns the underlying network’s BtlBw, but once the bucket
empties, all packets sent faster than the (much lower than
BtlBw) bucket fill rate are dropped. BBR eventually learns
this new delivery rate, but the ProbeBW gain cycle results
in continuous moderate losses. To minimize the upstream
bandwidth waste and application latency increase from
these losses, we added policer detection and an explicit
policer model to BBR. We are also actively researching
better ways to mitigate the policer damage.

COMPETITION WITH LOSS-BASED CONGESTION CONTROL
BBR converges toward a fair share of the bottleneck
bandwidth whether competing with other BBR flows or
with loss-based congestion control. Even as loss-based
congestion control fills the available buffer, ProbeBW
still robustly moves the BtlBw estimate toward the flow’s
fair share, and ProbeRTT finds an RTProp estimate just

24 of 34

acmqueue | september-october 2016 44

networks

high enough for tit-for-tat convergence to a fair share.
Unmanaged router buffers exceeding several BDPs,
however, cause long-lived loss-based competitors to bloat
the queue and grab more than their fair share. Mitigating
this is another area of active research.

CONCLUSION
Rethinking congestion control pays big dividends. Rather
than using events such as loss or buffer occupancy, which
are only weakly correlated with congestion, BBR starts
from Kleinrock’s formal model of congestion and its
associated optimal operating point. A pesky “impossibility”
result that the crucial parameters of delay and bandwidth
cannot be determined simultaneously is sidestepped by
observing they can be estimated sequentially. Recent
advances in control and estimation theory are then used
to create a simple distributed control loop that verges on
the optimum, fully utilizing the network while maintaining
a small queue. Google’s BBR implementation is available in
the open-source Linux kernel TCP and is described in detail
in the appendix to this article.

BBR is deployed on Google’s B4 backbone, improving
throughput by orders of magnitude compared with
CUBIC. It is also being deployed on Google and YouTube
Web servers, substantially reducing latency on all five
continents tested to date, most dramatically in developing
regions. BBR runs purely on the sender and does not
require changes to the protocol, receiver, or network,
making it incrementally deployable. It depends only on
RTT and packet-delivery acknowledgment, so can be

25 of 34

acmqueue | september-october 2016 45

networks

implemented for most Internet transport protocols.
The authors can be contacted at https://googlegroups.

com/d/forum/bbr-dev.

Acknowledgments
The authors are grateful to Len Kleinrock for pointing out
the right way to do congestion control. We are indebted
to Larry Brakmo for pioneering work on Vegas2 and New
Vegas congestion control that presaged many elements
of BBR, and for advice and guidance during BBR’s early
development. We would also like to thank Eric Dumazet,
Nandita Dukkipati, Jana Iyengar, Ian Swett, M. Fitz Nowlan,
David Wetherall, Leonidas Kontothanassis, Amin Vahdat,
and the Google BwE and YouTube infrastructure teams for
their invaluable help and support.

References
1. Abrahamsson, M. 2015. TCP ACK suppression. IETF AQM

mailing list; https://www.ietf.org/mail-archive/web/aqm/
current/msg01480.html.

2. Brakmo, L. S., Peterson, L.L. 1995. TCP Vegas: end-to-end
congestion avoidance on a global Internet. IEEE Journal
on Selected Areas in Communications 13(8): 1465–1480.

3. Chakravorty, R., Cartwright, J., Pratt, I. 2002. Practical
experience with TCP over GPRS. In IEEE GLOBECOM.

4. Corbet, J. 2013. TSO sizing and the FQ scheduler. LWN.
net; https://lwn.net/Articles/564978/.

5. Ericsson. 2015 Ericsson Mobility Report (June); https://
www.ericsson.com/res/docs/2015/ericsson-mobility-
report-june-2015.pdf.

26 of 34

acmqueue | september-october 2016 46

networks

6. ESnet. Application tuning to optimize international
astronomy workflow from NERSC to LFI-DPC at INAF-
OATs; http://fasterdata.es.net/data-transfer-tools/case-
studies/nersc-astronomy/.

7. Flach, T., Papageorge, P., Terzis, A., Pedrosa, L., Cheng,
Y., Karim, T., Katz-Bassett, E., Govindan, R. 2016. An
Internet-wide analysis of traffic policing. In ACM
SIGCOMM: 468–482.

8. Gail, R., Kleinrock, L. 1981. An invariant property of
computer network power. In Conference Record,
International Conference on Communications: 63.1.1-
63.1.5.

9. Gettys, J., Nichols, K. 2011. Bufferbloat: dark buffers
in the Internet. acmqueue 9(11); http://queue.acm.org/
detail.cfm?id=2071893.

10. Ha, S., Rhee, I. 2011. Taming the elephants: new TCP slow
start. Computer Networks 55(9): 2092–2110.

11. Ha, S., Rhee, I., Xu, L. 2008. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS Operating
Systems Review 42(5): 64–74.

12. Heidergott, B., Olsder, G. J., Van Der Woude, J. 2014. Max
Plus at Work: Modeling and Analysis of Synchronized
Systems: a Course on Max-Plus Algebra and its
Applications. Princeton University Press.

13. Jacobson, V. 1988. Congestion avoidance and control.
ACM SIGCOMM Computer Communication Review 18(4):
314–329.

14. Jaffe, J. 1981. Flow control power is nondecentralizable.
IEEE Transactions on Communications 29(9): 1301–1306.

15. Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L.,
Singh, A., Venkata, S., Wanderer, J., Zhou, J., Zhu, M.,

27 of 34

acmqueue | september-october 2016 47

networks

et al. 2013. B4: experience with a globally-deployed
software defined WAN. ACM SIGCOMM Computer
Communication Review 43(4): 3–14.

16. Kleinrock, L. 1979. Power and deterministic rules
of thumb for probabilistic problems in computer
communications. In Conference Record, International
Conference on Communications: 43.1.1-43.1.10.

17. Mathis, M., Semke, J., Mahdavi, J., Ott, T. 1997. The
macroscopic behavior of the TCP congestion avoidance
algorithm. ACM SIGCOMM Computer Communication
Review 27(3): 67–82.

18. Wikipedia. GPRS core network serving GPRS support
node; https://en.wikipedia.org/wiki/GPRS_core_
network#Serving_GPRS_support_node_.28SGSN.29.

Related Articles
Sender-side Buffers and the Case for Multimedia
Adaptation
Aiman Erbad and Charles “Buck” Krasic
http://queue.acm.org/detail.cfm?id=2381998

You Don’t Know Jack about Network Performance
Kevin Fall and Steve McCanne
http://queue.acm.org/detail.cfm?id=1066069

A Guided Tour through Data-center Networking
Dennis Abts and Bob Felderman
http://queue.acm.org/detail.cfm?id=2208919

28 of 34

https://en.wikipedia.org/wiki/GPRS_core_network#Serving_GPRS_support_node_.28SGSN.29
https://en.wikipedia.org/wiki/GPRS_core_network#Serving_GPRS_support_node_.28SGSN.29

acmqueue | september-october 2016 48

networks

Appendix – Detailed Description
A STATE MACHINE FOR SEQUENTIAL PROBING
The pacing_gain controls how fast packets are sent
relative to BtlBw and is key to BBR’s ability to learn. A
pacing_gain > 1 increases inflight and decreases packet
inter-arrival time, moving the connection to the right on
figure 1. A pacing_gain < 1 has the opposite effect, moving
the connection to the left.

BBR uses this pacing_gain to implement a simple
sequential probing state machine that alternates between
testing for higher bandwidths and then testing for lower
round-trip times. (It’s not necessary to probe for less
bandwidth since that is handled automatically by the BtlBw
max filter: new measurements reflect the drop, so BtlBw
will correct itself as soon as the last old measurement
times out of the filter. The RTprop min filter automatically
handles path length increases similarly.)

If the bottleneck bandwidth increases, BBR must send
faster to discover this. Likewise, if the actual round-trip
propagation delay changes, this changes the BDP, and thus
BBR must send slower to get inflight below BDP in order
to measure the new RTprop. Thus, the only way to discover
these changes is to run experiments, sending faster to
check for BtlBw increases or sending slower to check for
RTprop decreases. The frequency, magnitude, duration, and
structure of these experiments differ depending on what’s
already known (startup or steady-state) and sending app
behavior (intermittent or continuous).

STEADY-STATE BEHAVIOR
BBR flows spend the vast majority of their time in

29 of 34

acmqueue | september-october 2016 49

networks

ProbeBW state, probing for bandwidth using an approach
called gain cycling, which helps BBR flows reach high
throughput, low queuing delay, and convergence to a fair
share of bandwidth. With gain cycling, BBR cycles through
a sequence of values for the pacing_gain. It uses an eight-
phase cycle with the following pacing_gain values: 5/4, 3/4,
1, 1, 1, 1, 1, 1. Each phase normally lasts for the estimated
RTprop. This design allows the gain cycle first to probe for
more bandwidth with a pacing_gain above 1.0, then drain
any resulting queue with a pacing_gain an equal distance
below 1.0, and then cruise with a short queue using a
pacing_gain of 1.0. The average gain across all phases is 1.0
because ProbeBW aims for its average pacing rate to equal
the available bandwidth and thus maintain high utilization,
while maintaining a small, well-bounded queue. Note that
while gain cycling varies the pacing_gain value, the cwnd_
gain stays constant at two, since delayed and stretched
acks can strike at any time (see the section on Delayed and
Stretched Acks).

Furthermore, to improve mixing and fairness, and
to reduce queues when multiple BBR flows share a
bottleneck, BBR randomizes the phases of ProbeBW gain
cycling by randomly picking an initial phase—from among
all but the 3/4 phase—when entering ProbeBW. Why not
start cycling with 3/4? The main advantage of the 3/4
pacing_gain is to drain any queue that can be created by
running a 5/4 pacing_gain when the pipe is already full.
When exiting Drain or ProbeRTT and entering ProbeBW,
there is no queue to drain, so the 3/4 gain does not provide
that advantage. Using 3/4 in those contexts only has a
cost: a link utilization for that round of 3/4 instead of 1.

30 of 34

acmqueue | september-october 2016 50

networks

Since starting with 3/4 would have a cost but no benefit,
and since entering ProbeBW happens at the start of any
connection long enough to have a Drain, BBR uses this
small optimization.

BBR flows cooperate to periodically drain the
bottleneck queue using a state called ProbeRTT. In any
state other than ProbeRTT itself, if the RTProp estimate
has not been updated (i.e., by getting a lower RTT
measurement) for more than 10 seconds, then BBR enters
ProbeRTT and reduces the cwnd to a very small value
(four packets). After maintaining this minimum number of
packets in flight for at least 200 ms and one round trip,
BBR leaves ProbeRTT and transitions to either Startup or
ProbeBW, depending on whether it estimates the pipe was
filled already.

BBR was designed to spend the vast majority of its time
(about 98 percent) in ProbeBW and the rest in ProbeRTT,
based on a set of tradeoffs. ProbeRTT lasts long enough
(at least 200 ms) to allow flows with different RTTs to
have overlapping ProbeRTT states, while still being short
enough to bound the performance penalty of ProbeRTT’s
cwnd capping to roughly 2 percent (200 ms/10 seconds).
The RTprop filter window (10 seconds) is short enough to
allow quick convergence if traffic levels or routes change,
but long enough so that interactive applications (e.g., Web
pages, remote procedure calls, video chunks) often have
natural silences or low-rate periods within the window
where the flow’s rate is low enough or long enough to
drain its queue in the bottleneck. Then the RTprop filter
opportunistically picks up these RTprop measurements,
and RTProp refreshes without requiring ProbeRTT. This

31 of 34

acmqueue | september-october 2016 51

networks

way, flows typically need only pay the 2 percent penalty if
there are multiple bulk flows busy sending over the entire
RTProp window.

STARTUP BEHAVIOR
When a BBR flow starts up, it performs its first (and
most rapid) sequential probe/drain process. Network-link
bandwidths span a range of 1012—from a few bits to 100
gigabits per second. To learn BtlBw, given this huge range
to explore, BBR does a binary search of the rate space. This
finds BtlBw very quickly (log2BDP round trips) but at the
expense of creating a 2BDP queue on the final step of the
search. BBR’s Startup state does this search and then the
Drain state drains the resulting queue.

First, Startup grows the sending rate exponentially,
doubling it each round. To achieve this rapid probing in the
smoothest possible fashion, in Startup the pacing_gain and
cwnd_gain are set to 2/ln2, the minimum value that will
allow the sending rate to double each round. Once the pipe
is full, the cwnd_gain bounds the queue to (cwnd_gain - 1)
x BDP.

During Startup, BBR estimates whether the pipe is full
by looking for a plateau in the BtlBw estimate. If it notices
that there are several (three) rounds where attempts to
double the delivery rate actually result in little increase
(less than 25 percent), then it estimates that it has reached
BtlBw and exits Startup and enters Drain. BBR waits three
rounds in order to have solid evidence that the sender is
not detecting a delivery-rate plateau that was temporarily
imposed by the receive window. Allowing three rounds
provides time for the receiver’s receive-window autotuning

32 of 34

acmqueue | september-october 2016 52

networks

to open up the receive window and for the BBR sender to
realize that BtlBw should be higher: in the first round the
receive-window autotuning algorithm grows the receive
window; in the second round the sender fills the higher
receive window; in the third round the sender gets higher
delivery-rate samples. This three-round threshold was
validated by YouTube experimental data.

In Drain, BBR aims to quickly drain any queue created in
Startup by switching to a pacing_gain that is the inverse
of the value used during Startup, which drains the queue in
one round. When the number of packets in flight matches
the estimated BDP, meaning BBR estimates that the queue
has been fully drained but the pipe is still full, then BBR
leaves Drain and enters ProbeBW.

Note that BBR’s Startup and CUBIC’s slow start both
explore the bottleneck capacity exponentially, doubling
their sending rate each round; they differ in major ways,
however. First, BBR is more robust in discovering available
bandwidth, since it does not exit the search upon packet
loss or (as in CUBIC’s Hystart10) delay increases. Second,
BBR smoothly accelerates its sending rate, while within
every round CUBIC (even with pacing) sends a burst
of packets and then imposes a gap of silence. Figure 4
demonstrates the number of packets in flight and the RTT
observed on each acknowledgment for BBR and CUBIC.

REACTING TO TRANSIENTS
The network path and traffic traveling over it can make
sudden dramatic changes. To adapt to these smoothly and
robustly, and reduce packet losses in such cases, BBR uses
a number of strategies to implement the core model. First,

33 of 34

acmqueue | september-october 2016 53

networks

BBR treats cwnd_gain x BDP as a target that the current
cwnd approaches cautiously from below, increasing cwnd
by no more than the amount of data acknowledged at any
time. Second, upon a retransmission timeout, meaning
the sender thinks all in-flight packets are lost, BBR
conservatively reduces cwnd to one packet and sends
a single packet (just like loss-based congestion-control
algorithms such as CUBIC). Finally, when the sender
detects packet loss but there are still packets in flight, on
the first round of the loss-repair process BBR temporarily
reduces the sending rate to match the current delivery
rate; on second and later rounds of loss repair it ensures
the sending rate never exceeds twice the current delivery
rate. This significantly reduces transient losses when BBR
encounters policers or competes with other flows on a
BDP-scale buffer.

The authors are members of Google’s make-tcp-fast project,
whose goal is to evolve Internet transport via fundamental
research and open source software. Project contributions
include TFO (TCP Fast Open), TLP (Tail Loss Probe), RACK loss
recovery, fq/pacing, and a large fraction of the git commits to
the Linux kernel TCP code for the past five years.

34 of 34

