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B
y all accounts, today’s 
Internet is not moving data 
as well as it should. Most 
of the world’s cellular 
users experience delays of seconds to minutes; 

public Wi-Fi in airports and conference venues is often 
worse. Physics and climate researchers need to exchange 
petabytes of data with global collaborators but find 
their carefully engineered multi-Gbps infrastructure 
often delivers at only a few Mbps over intercontinental 
distances.6 

These problems result from a design choice made 
when TCP congestion control was created in the 1980s—
interpreting packet loss as “congestion.”13 This equivalence 
was true at the time but was because of technology 
limitations, not first principles. As NICs (network interface 
controllers) evolved from Mbps to Gbps and memory chips 
from KB to GB, the relationship between packet loss and 
congestion became more tenuous. 

Today TCP’s loss-based congestion control—even with 
the current best of breed, CUBIC11—is the primary cause 
of these problems. When bottleneck buffers are large, 
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loss-based congestion control keeps them full, causing 
bufferbloat. When bottleneck buffers are small, loss-
based congestion control misinterprets loss as a signal 
of congestion, leading to low throughput. Fixing these 
problems requires an alternative to loss-based congestion 
control. Finding this alternative requires an understanding 
of where and how network congestion originates.

CONGESTION AND BOTTLENECKS
At any time, a (full-duplex) TCP connection has exactly one 
slowest link or bottleneck in each direction. The bottleneck 
is important because:
3 It determines the connection’s maximum data-delivery 
rate. This is a general property of incompressible flow (e.g., 
picture a six-lane freeway at rush hour where an accident 
has reduced one short section to a single lane. The traffic 
upstream of the accident moves no faster than the traffic 
through that lane).
3 It’s where persistent queues form. Queues shrink only 
when a link’s departure rate exceeds its arrival rate. For a
connection running at maximum delivery rate, all links 
upstream of the bottleneck have a faster departure rate so 
their queues migrate to the bottleneck.

Regardless of how many links a connection traverses 
or what their individual speeds are, from TCP’s viewpoint 
an arbitrarily complex path behaves as a single link with 
the same RTT (round-trip time) and bottleneck rate. Two 
physical constraints, RTprop (round-trip propagation 
time) and BtlBw (bottleneck bandwidth), bound transport 
performance. (If the network path were a physical pipe, 
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RTprop would be its length and BtlBw its minimum 
diameter.)

Figure 1 shows RTT and delivery rate variation with 
the amount of data in flight (data sent but not yet 
acknowledged). Blue lines show the RTprop constraint, 
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green lines the BtlBw constraint, and red lines the 
bottleneck buffer. Operation in the shaded regions isn’t 
possible since it would violate at least one constraint. 
Transitions between constraints result in three different 
regions (app-limited, bandwidth-limited, and buffer-
limited) with qualitatively different behavior. 

When there isn’t enough data in flight to fill the pipe, 
RTprop determines behavior; otherwise, BtlBw dominates. 
Constraint lines intersect at inflight = BtlBw × RTprop, a.k.a. 
the pipe’s BDP (bandwidth-delay product). Since the pipe 
is full past this point, the inflight – BDP excess creates 
a queue at the bottleneck, which results in the linear 
dependence of RTT on inflight data shown in the upper 
graph. Packets are dropped when the excess exceeds the 
buffer capacity. Congestion is just sustained operation 
to the right of the BDP line, and congestion control is 
some scheme to bound how far to the right a connection 
operates on average.

Loss-based congestion control operates at the right edge 
of the bandwidth-limited region, delivering full bottleneck 
bandwidth at the cost of high delay and frequent packet loss. 
When memory was expensive buffer sizes were only slightly 
larger than the BDP, which minimized loss-based congestion 
control’s excess delay. Subsequent memory price decreases 
resulted in buffers orders of magnitude larger than ISP link 
BDPs, and the resulting bufferbloat yielded RTTs of seconds 
instead of milliseconds.9

The left edge of the bandwidth-limited region is a better 
operating point than the right. In 1979 Leonard Kleinrock16 
showed this operating point was optimal, maximizing 
delivered bandwidth while minimizing delay and loss, both 
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for individual connections and for the network as a whole8. 
Unfortunately, around the same time Jeffrey M. Jaffe14 
proved it was impossible to create a distributed algorithm 
that converged to this operating point. This result changed 
the direction of research from finding a distributed 
algorithm that achieved Kleinrock’s optimal operating 
point to investigating different approaches to congestion 
control.

Our group at Google spends hours each day examining 
TCP packet header captures from all over the world, making 
sense of behavior anomalies and pathologies. Our usual first 
step is finding the essential path characteristics, RTprop and 
BtlBw. That these can be inferred from traces suggests that 
Jaffe’s result might not be as limiting as it once appeared. 
His result rests on fundamental measurement ambiguities 
(e.g., whether a measured RTT increase is caused by a path-
length change, bottleneck bandwidth decrease, or queuing 
delay increase from another connection’s traffic). Although 
it is impossible to disambiguate any single measurement, 
a connection’s behavior over time tells a clearer story, 
suggesting the possibility of measurement strategies 
designed to resolve ambiguity. 

Combining these measurements with a robust servo 
loop using recent control systems advances12 could result 
in a distributed congestion-control protocol that reacts 
to actual congestion, not packet loss or transient queue 
delay, and converges with high probability to Kleinrock’s 
optimal operating point. Thus began our three-year quest 
to create a congestion control based on measuring the 
two parameters that characterize a path: bottleneck 
bandwidth and round-trip propagation time, or BBR.
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CHARACTERIZING THE BOTTLENECK
A connection runs with the highest throughput and lowest 
delay when (rate balance) the bottleneck packet arrival 
rate equals BtlBw, and (full pipe) the total data in flight is 
equal to the BDP (= BtlBw × RTprop).

The first condition guarantees that the bottleneck can 
run at 100 percent utilization. The second guarantees 
there is enough data to prevent bottleneck starvation but 
not overfill the pipe. The rate balance condition alone does 
not ensure there is no queue, only that it can’t change size 
(e.g., if a connection starts by sending its 10-packet Initial 
Window into a five-packet BDP, then runs at exactly the 
bottleneck rate, five of the 10 initial packets fill the pipe so 
the excess forms a standing queue at the bottleneck that 
cannot dissipate). Similarly, the full pipe condition does not 
guarantee there is no queue (e.g., a connection sending a 
BDP in BDP/2 bursts gets full bottleneck utilization, but 
with an average queue of BDP/4). The only way to minimize 
the queue at the bottleneck and all along the path is to 
meet both conditions simultaneously.

BtlBw and RTprop vary over the life of a connection, so 
they must be continuously estimated. TCP currently tracks 
RTT (the time interval from sending a data packet until it is 
acknowledged) since it’s required for loss detection. At any 
time t,

where 𝛈 ≥ 0 represents the “noise” introduced by queues 
along the path, the receiver’s delayed ack strategy, 
ack aggregation, etc. RTprop is a physical property of 
the connection’s path and changes only when the path 
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changes. Since path changes happen on time scales >> 
RTprop, an unbiased, efficient estimator at time T  is

I.e., a running min over time window WR (which is typically 
tens of seconds to minutes).

Unlike RTT, nothing in the TCP spec requires 
implementations to track bottleneck bandwidth, but a 
good estimate results from tracking delivery rate. When 
the ack for some packet arrives back at the sender, it 
conveys that packet’s RTT and announces the delivery of 
data inflight when that packet departed. Average delivery 
rate between send and ack is the ratio of data delivered 
to time elapsed: deliveryRate = Δdelivered/Δt. This rate 
must be ≤ the bottleneck rate (the arrival amount is known 
exactly so all the uncertainty is in the Δt, which must be 
≥ the true arrival interval; thus, the ratio must be ≤ the 
true delivery rate, which is, in turn, upper-bounded by 
the bottleneck capacity). Therefore, a windowed-max of 
delivery rate is an efficient, unbiased estimator of BtlBw:

where the time window WB is typically six to ten RTTs.
TCP must record the departure time of each packet to 

compute RTT. BBR augments that record with the total 
data delivered so each ack arrival yields both an RTT and 
a delivery rate measurement that the filters convert to 
RTprop and BtlBw estimates.

Note that these values are completely independent: 
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RTprop can change (for example, on a route change) but 
still have the same bottleneck, or BtlBw can change (for 
example, when a wireless link changes rate) without 
the path changing. (This independence is why both 
constraints have to be known to match sending behavior 
to delivery path.) Since RTprop is visible only to the left 
of BDP and BtlBw only to the right in figure 1, they obey 
an uncertainty principle: whenever one can be measured, 
the other cannot. Intuitively, this is because the pipe has 
to be overfilled to find its capacity, which creates a queue 
that obscures the length of the pipe. For example, an 
application running a request/response protocol might 
never send enough data to fill the pipe and observe 
BtlBw. A multi-hour bulk data transfer might spend its 
entire lifetime in the bandwidth-limited region and have 
only a single sample of RTprop from the first packet’s 
RTT. This intrinsic uncertainty means that in addition to 
estimators to recover the two path parameters, there 
must be states that track both what can be learned at 
the current operating point and, as information becomes 
stale, how to get to an operating point where it can be 
relearned.

MATCHING THE PACKET FLOW TO THE DELIVERY PATH
The core BBR algorithm has two parts:

When an ack is received
Each ack provides new RTT and delivery rate 
measurements that update the RTprop and BtlBw 
estimates:
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function onAck(packet) 
  rtt = now - packet.sendtime 
  update_min_filter(RTpropFilter, rtt) 
  delivered += packet.size 
  delivered_time = now 
  deliveryRate = (delivered - packet.delivered)  
                 /(now - packet.delivered_time) 
  if (deliveryRate > BtlBwFilter.currentMax 
      || ! packet.app_limited) 
      update_max_filter(BtlBwFilter,  
                      deliveryRate) 
  if (app_limited_until > 0) 
      app_limited_until - = packet.size

The if checks address the uncertainty issue described 
in the last paragraph: senders can be application limited, 
meaning the application runs out of data to fill the network. 
This is quite common because of request/response traffic. 
When there is a send opportunity but no data to send, 
BBR marks the corresponding bandwidth sample(s) as 
application limited (see send() pseudocode to follow). The 
code here decides which samples to include in the bandwidth 
model so it reflects network, not application, limits. BtlBw 
is a hard upper bound on the delivery rate so a measured 
delivery rate larger than the current BtlBw estimate must 
mean the estimate is too low, whether or not the sample 
was app-limited. Otherwise, application-limited samples 
are discarded. (Figure 1 shows that in the app-limited region 
deliveryRate underestimates BtlBw. These checks 
prevent filling the BtlBw filter with underestimates, which 
would cause data to be sent too slowly.)
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When data is sent
To match the packet-arrival rate to the bottleneck link’s 
departure rate, BBR paces every data packet. BBR 
must match the bottleneck rate, which means pacing is 
integral to the design and fundamental to operation—
pacing_rate is BBR’s primary control parameter. A 
secondary parameter, cwnd_gain, bounds inflight to a 
small multiple of the BDP to handle common network and 
receiver pathologies (see the later section on Delayed and 
Stretched ACKs). Conceptually, the TCP send routine looks 
like the following code. (In Linux, sending uses the efficient 
FQ/pacing queuing discipline,4 which gives BBR line-rate 
single-connection performance on multigigabit links and 
handles thousands of lower-rate paced connections with 
negligible CPU overhead.)

function send(packet) 
    bdp = BtlBwFilter.currentMax 
          * RTpropFilter.currentMin 
    if (inflight >= cwnd_gain * bdp) 
        // wait for ack or timeout 
        return 
    if (now >= nextSendTime) 
        packet = nextPacketToSend() 
        if (! packet) 
            app_limited_until = inflight 
            return 
        packet.app_limited = 
                (app_limited_until > 0) 
        packet.sendtime = now 
        packet.delivered = delivered 
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        packet.delivered_time = delivered_time 
        ship(packet) 
        nextSendTime = now + packet.size / 
               (pacing_gain * 
                BtlBwFilter.currentMax) 
    timerCallbackAt(send, nextSendTime)

Steady-state behavior
The rate and amount BBR sends is solely a function of 
the estimated BtlBw and RTprop, so the filters control 
adaptation in addition to estimating the bottleneck 
constraints. This creates the novel control loop shown in 
figure 2, which illustrates the RTT (blue), inflight (green) 
and delivery rate (red) detail from 700 ms of a 10-Mbps, 
40-ms flow. The thick gray line above the delivery-rate 
data is the state of the BtlBw max filter. The triangular 
structures result from BBR cycling pacing_gain to 
determine if BtlBw has increased. The gain used for each 
part of the cycle is shown time-aligned with the data it 
influenced. The gain is applied an RTT earlier, when the 
data is sent. This is indicated by the horizontal jog in the 
event sequence description running up the left side.

BBR minimizes delay by spending most of its time with 
one BDP in flight, paced at the BtlBw estimate. This moves 
the bottleneck to the sender so it can’t observe BtlBw 
increases. Consequently, BBR periodically spends an RTprop 
interval at a pacing_gain > 1, which increases the sending 
rate and inflight. If BtlBw hasn’t changed, then a queue 
is created at the bottleneck, increasing RTT, which keeps 
deliveryRate constant. (This queue is removed by sending 
at a compensating pacing_gain < 1 for the next RTprop.) If 
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BtlBw has increased, deliveryRate increases and the 
new max immediately increases the BtlBw filter output, 
increasing the base pacing rate. Thus, BBR converges to the 
new bottleneck rate exponentially fast. Figure 3 shows the 
effect on a 10-Mbps, 40-ms flow of BtlBw abruptly doubling 
to 20 Mbps after 20 seconds of steady operation (top graph) 
then dropping to 10 Mbps after another 20 seconds of 
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steady operation at 20 Mbps (bottom graph).
(BBR is a simple instance of a Max-plus control system, 

a new approach to control based on nonstandard algebra.12 
This approach allows the adaptation rate [controlled by 
the max gain] to be independent of the queue growth 
[controlled by the average gain]. Applied to this problem, 
it results in a simple, implicit control loop where the 
adaptation to physical constraint changes is automatically 
handled by the filters representing those constraints. A 
conventional control system would require multiple loops 
connected by a complex state machine to accomplish the 
same result.)

SINGLE BBR FLOW STARTUP BEHAVIOR
Existing implementations handle events such as startup, 
shutdown, and loss recovery with event-specific algorithms 
and many lines of code. BBR uses the code detailed earlier 
(in the previous section, Matching the Packet Flow to 
the Delivery Path) for everything, handling events by 
sequencing through a set of “states” that are defined by a 
table containing one or more fixed gains and exit criteria. 
Most of the time is spent in the ProbeBW state described in 
the section on Steady-state Behavior. The Startup and Drain 
states are used at connection start (figure 4). To handle 
Internet link bandwidths spanning 12 orders of magnitude, 
Startup implements a binary search for BtlBw by using 
a gain of 2/ln2 to double the sending rate while delivery 
rate is increasing. This discovers BtlBw in log2BDP  RTTs 
but creates up to 2BDP excess queue in the process. Once 
Startup finds BtlBw, BBR transitions to Drain, which uses 
the inverse of Startup’s gain to get rid of the excess queue, 
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then to ProbeBW once the inflight drops to a BDP.
Figure 4 shows the first second of a 10-Mbps, 40-ms 

BBR flow. The time/sequence plot shows the sender 
(green) and receiver (blue) progress vs. time. The red line 
shows a CUBIC sender under identical conditions. Vertical 
gray lines mark BBR state transitions. The lower figure 
shows the RTT of the two connections vs. time. Note that 
the time reference for this data is ack arrival (blue) so, 
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while they appear to be time shifted, events are shown at 
the point where BBR learns of them and acts.

The lower graph of figure 4 contrasts BBR and CUBIC. 
Their initial behavior is similar, but BBR completely drains 
its startup queue while CUBIC can’t. Without a path model 
to tell it how much of the inflight is excess, CUBIC makes 
inflight growth less aggressive, but growth continues until 
either the bottleneck buffer fills and drops a packet or the 
receiver’s inflight limit (TCP’s receive window) is reached.

Figure 5 shows RTT behavior during the first eight 
seconds of the connections shown in figure 4. CUBIC 
(red) fills the available buffer, then cycles from 70 to 100 
percent full every few seconds. After startup, BBR (green) 
runs with essentially no queue. 
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MULTIPLE BBR FLOWS SHARING A BOTTLENECK
Figure 6 shows how individual throughputs for several BBR 
flows sharing a 100-Mbps/10-ms bottleneck converge to a 
fair share. The downward facing triangular structures are 
connection ProbeRTT states whose self-synchronization 
accelerates final convergence. 

ProbeBW gain cycling (figure 2) causes bigger flows to 
yield bandwidth to smaller flows, resulting in each learning 
its fair share. This happens fairly quickly (a few ProbeBW 
cycles), though unfairness can persist when late starters 
overestimate RTprop as a result of starting when other 
flows have (temporarily) created a queue.

To learn the true RTProp, a flow moves to the left of 
BDP using ProbeRTT state: when the RTProp estimate has 
not been updated (i.e., by measuring a lower RTT) for many 
seconds, BBR enters ProbeRTT, which reduces the inflight 
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to four packets for at least one round trip, then returns 
to the previous state. Large flows entering ProbeRTT 
drain many packets from the queue, so several flows see a 
new RTprop (new minimum RTT). This makes their RTprop 
estimates expire at the same time, so they enter ProbeRTT 
together, which makes the total queue dip larger and 
causes more flows to see a new RTprop, and so on. This 
distributed coordination is the key to both fairness and 
stability.

BBR synchronizes flows around the desirable event 
of an empty bottleneck queue. By contrast, loss-based 
congestion control synchronizes around the undesirable 
events of periodic queue growth and overflow, amplifying 
delay and packet loss.

GOOGLE B4 WAN DEPLOYMENT EXPERIENCE
Google’s B4 network is a high-speed WAN (wide-area 
network) built using commodity switches.15 Losses on 
these shallow-buffered switches result mostly from 
coincident arrivals of small traffic bursts. In 2015 Google 
started switching B4 production traffic from CUBIC to 
BBR. No issues or regressions were experienced, and 
since 2016 all B4 TCP traffic uses BBR. Figure 7 shows one 
reason for switching: BBR’s throughput is consistently 
2 to 25 times greater than CUBIC’s. We had expected 
even more improvement but discovered that 75 percent 
of BBR connections were limited by the kernel’s TCP 
receive buffer, which the network operations team had 
deliberately set low (8 MB) to prevent CUBIC flooding the 
network with megabytes of excess inflight (8-MB/200-
ms intercontinental RTT ⇒ 335-Mbps max throughput). 
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Manually raising the receive buffer on one US-Europe path 
caused BBR immediately to reach 2 Gbps, while CUBIC 
remained at 15 Mbps—the 133x relative improvement 
predicted by Mathis et al.17

Figure 7 shows BBR vs. CUBIC relative throughput 
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improvement; the inset shows throughput CDFs 
(cumulative distribution functions). Measures are from 
an active prober service that opens persistent BBR and 
CUBIC connections to remote data centers, then transfers 
8 MB of data every minute. Probers communicate via many 
B4 paths within and between North America, Europe, and 
Asia. 

The huge improvement is a direct consequence of BBR 
not using loss as a congestion indicator. To achieve full 
bandwidth, existing loss-based congestion controls require 
the loss rate to be less than the inverse square of the BDP17 
(e.g., < one loss per 30 million packets for a 1-Gbps/100-ms 
path). Figure 8 compares measured goodput at various 
loss rates. CUBIC’s loss tolerance is a structural property 
of the algorithm, while BBR’s is a configuration parameter. 
As BBR’s loss rate approaches the ProbeBW peak gain, the 
probability of measuring a delivery rate of the true BtlBw 
drops sharply, causing the max filter to underestimate.

Figure 8 shows BBR vs. CUBIC goodput for 60-second 
flows on a 100-Mbps/100-ms link with 0.001 to 50 percent 
random loss. CUBIC’s throughput decreases by 10 times 
at 0.1 percent loss and totally stalls above 1 percent. 
The maximum possible throughput is the link rate times 
fraction delivered (= 1 - lossRate). BBR meets this limit up 
to a 5 percent loss and is close up to 15 percent.

YOUTUBE EDGE DEPLOYMENT EXPERIENCE
BBR is being deployed on Google.com and YouTube video 
servers. Google is running small-scale experiments 
in which a small percentage of users are randomly 
assigned either BBR or CUBIC. Playbacks using BBR 
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show significant improvement in all of YouTube’s quality-
of-experience metrics, possibly because BBR’s behavior 
is more consistent and predictable. BBR only slightly 
improves connection throughput because YouTube already 
adapts the server’s streaming rate to well below BtlBw 
to minimize bufferbloat and rebuffer events. Even so, BBR 
reduces median RTT by 53 percent on average globally and 
by more than 80 percent in the developing world. Figure 9 
shows BBR vs. CUBIC median RTT improvement from more 
than 200 million YouTube playback connections measured 
on five continents over a week. 

More than half of the world’s 7 billion mobile Internet 
subscriptions connect via 8- to 114-kbps 2.5 G systems,5 
which suffer well-documented problems because of loss-
based congestion control’s buffer-filling propensities.3 
The bottleneck link for these systems is usually between 
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the SGSN (serving GPRS support node)18 and mobile 
device. SGSN software runs on a standard PC platform 
with ample memory, so there are frequently megabytes 
of buffer between the Internet and mobile device. Figure 
10 compares (emulated) SGSN Internet-to-mobile delay 
for BBR and CUBIC. The horizontal lines mark one of the 
more serious consequences: TCP adapts to long RTT delay 
except on the connection initiation SYN packet, which has 
an OS-dependent fixed timeout. When the mobile device 
is receiving bulk data (e.g., from automatic app updates) 
via a large-buffered SGSN, the device can’t connect to 
anything on the Internet until the queue empties (the SYN 
ACK accept packet is delayed for longer than the fixed SYN 
timeout).

Figure 10 shows steady-state median RTT variation with 
link buffer size on a 128-Kbps/40-ms link with eight BBR 
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(green) or CUBIC (red) flows. BBR keeps the queue near its 
minimum, independent of both bottleneck buffer size and 
number of active flows. CUBIC flows always fill the buffer, 
so the delay grows linearly with buffer size. 

MOBILE CELLULAR ADAPTIVE BANDWIDTH
Cellular systems adapt per-subscriber bandwidth based 
partly on a demand estimate that uses the queue of 
packets destined for the subscriber. Early versions of 
BBR were tuned to create very small queues, resulting in 
connections getting stuck at low rates. Raising the peak 
ProbeBW pacing_gain to create bigger queues resulted in 
fewer stuck connections, indicating that it’s possible to be 
too nice to some networks. With the current 1.25 × BtlBw 
peak gain, no degradation is apparent compared with 
CUBIC on any network.

FIGURE 10: Steady-state median RTT variation with link buffer size
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DELAYED AND STRETCHED ACKS
Cellular, Wi-Fi, and cable broadband networks often 
delay and aggregate ACKs.1 When inflight is limited to one 
BDP, this results in throughput-reducing stalls. Raising 
ProbeBW’s cwnd_gain to two allowed BBR to continue 
sending smoothly at the estimated delivery rate, even 
when ACKs are delayed by up to one RTT. This largely 
avoids stalls.

TOKEN-BUCKET POLICERS
BBR’s initial YouTube deployment revealed that most of 
the world’s ISPs mangle traffic with token-bucket policers.7 
The bucket is typically full at connection startup so BBR 
learns the underlying network’s BtlBw, but once the bucket 
empties, all packets sent faster than the (much lower than 
BtlBw) bucket fill rate are dropped. BBR eventually learns 
this new delivery rate, but the ProbeBW gain cycle results 
in continuous moderate losses. To minimize the upstream 
bandwidth waste and application latency increase from 
these losses, we added policer detection and an explicit 
policer model to BBR. We are also actively researching 
better ways to mitigate the policer damage.

COMPETITION WITH LOSS-BASED CONGESTION CONTROL
BBR converges toward a fair share of the bottleneck 
bandwidth whether competing with other BBR flows or 
with loss-based congestion control. Even as loss-based 
congestion control fills the available buffer, ProbeBW 
still robustly moves the BtlBw estimate toward the flow’s 
fair share, and ProbeRTT finds an RTProp estimate just 
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high enough for tit-for-tat convergence to a fair share. 
Unmanaged router buffers exceeding several BDPs, 
however, cause long-lived loss-based competitors to bloat 
the queue and grab more than their fair share. Mitigating 
this is another area of active research.

CONCLUSION
Rethinking congestion control pays big dividends. Rather 
than using events such as loss or buffer occupancy, which 
are only weakly correlated with congestion, BBR starts 
from Kleinrock’s formal model of congestion and its 
associated optimal operating point. A pesky “impossibility” 
result that the crucial parameters of delay and bandwidth 
cannot be determined simultaneously is sidestepped by 
observing they can be estimated sequentially. Recent 
advances in control and estimation theory are then used 
to create a simple distributed control loop that verges on 
the optimum, fully utilizing the network while maintaining 
a small queue. Google’s BBR implementation is available in 
the open-source Linux kernel TCP and is described in detail 
in the appendix to this article.

BBR is deployed on Google’s B4 backbone, improving 
throughput by orders of magnitude compared with 
CUBIC. It is also being deployed on Google and YouTube 
Web servers, substantially reducing latency on all five 
continents tested to date, most dramatically in developing 
regions. BBR runs purely on the sender and does not 
require changes to the protocol, receiver, or network, 
making it incrementally deployable. It depends only on 
RTT and packet-delivery acknowledgment, so can be 
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implemented for most Internet transport protocols.
The authors can be contacted at https://googlegroups.

com/d/forum/bbr-dev.
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Appendix – Detailed Description
A STATE MACHINE FOR SEQUENTIAL PROBING
The pacing_gain controls how fast packets are sent 
relative to BtlBw and is key to BBR’s ability to learn. A 
pacing_gain > 1 increases inflight and decreases packet 
inter-arrival time, moving the connection to the right on 
figure 1. A pacing_gain < 1 has the opposite effect, moving 
the connection to the left.

BBR uses this pacing_gain to implement a simple 
sequential probing state machine that alternates between 
testing for higher bandwidths and then testing for lower 
round-trip times. (It’s not necessary to probe for less 
bandwidth since that is handled automatically by the BtlBw 
max filter: new measurements reflect the drop, so BtlBw 
will correct itself as soon as the last old measurement 
times out of the filter. The RTprop min filter automatically 
handles path length increases similarly.)

If the bottleneck bandwidth increases, BBR must send 
faster to discover this. Likewise, if the actual round-trip 
propagation delay changes, this changes the BDP, and thus 
BBR must send slower to get inflight below BDP in order 
to measure the new RTprop. Thus, the only way to discover 
these changes is to run experiments, sending faster to 
check for BtlBw increases or sending slower to check for 
RTprop decreases. The frequency, magnitude, duration, and 
structure of these experiments differ depending on what’s 
already known (startup or steady-state) and sending app 
behavior (intermittent or continuous).

STEADY-STATE BEHAVIOR
BBR flows spend the vast majority of their time in 
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ProbeBW state, probing for bandwidth using an approach 
called gain cycling, which helps BBR flows reach high 
throughput, low queuing delay, and convergence to a fair 
share of bandwidth. With gain cycling, BBR cycles through 
a sequence of values for the pacing_gain. It uses an eight-
phase cycle with the following pacing_gain values: 5/4, 3/4, 
1, 1, 1, 1, 1, 1. Each phase normally lasts for the estimated 
RTprop. This design allows the gain cycle first to probe for 
more bandwidth with a pacing_gain above 1.0, then drain 
any resulting queue with a pacing_gain an equal distance 
below 1.0, and then cruise with a short queue using a 
pacing_gain of 1.0. The average gain across all phases is 1.0 
because ProbeBW aims for its average pacing rate to equal 
the available bandwidth and thus maintain high utilization, 
while maintaining a small, well-bounded queue. Note that 
while gain cycling varies the pacing_gain value, the cwnd_
gain stays constant at two, since delayed and stretched 
acks can strike at any time (see the section on Delayed and 
Stretched Acks).

Furthermore, to improve mixing and fairness, and 
to reduce queues when multiple BBR flows share a 
bottleneck, BBR randomizes the phases of ProbeBW gain 
cycling by randomly picking an initial phase—from among 
all but the 3/4 phase—when entering ProbeBW. Why not 
start cycling with 3/4? The main advantage of the 3/4 
pacing_gain is to drain any queue that can be created by 
running a 5/4 pacing_gain when the pipe is already full. 
When exiting Drain or ProbeRTT and entering ProbeBW, 
there is no queue to drain, so the 3/4 gain does not provide 
that advantage. Using 3/4 in those contexts only has a 
cost: a link utilization for that round of 3/4 instead of 1. 
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Since starting with 3/4 would have a cost but no benefit, 
and since entering ProbeBW happens at the start of any 
connection long enough to have a Drain, BBR uses this 
small optimization.

BBR flows cooperate to periodically drain the 
bottleneck queue using a state called ProbeRTT. In any 
state other than ProbeRTT itself, if the RTProp estimate 
has not been updated (i.e., by getting a lower RTT 
measurement) for more than 10 seconds, then BBR enters 
ProbeRTT and reduces the cwnd to a very small value 
(four packets). After maintaining this minimum number of 
packets in flight for at least 200 ms and one round trip, 
BBR leaves ProbeRTT and transitions to either Startup or 
ProbeBW, depending on whether it estimates the pipe was 
filled already.

BBR was designed to spend the vast majority of its time 
(about 98 percent) in ProbeBW and the rest in ProbeRTT, 
based on a set of tradeoffs. ProbeRTT lasts long enough 
(at least 200 ms) to allow flows with different RTTs to 
have overlapping ProbeRTT states, while still being short 
enough to bound the performance penalty of ProbeRTT’s 
cwnd capping to roughly 2 percent (200 ms/10 seconds). 
The RTprop filter window (10 seconds) is short enough to 
allow quick convergence if traffic levels or routes change, 
but long enough so that interactive applications (e.g., Web 
pages, remote procedure calls, video chunks) often have 
natural silences or low-rate periods within the window 
where the flow’s rate is low enough or long enough to 
drain its queue in the bottleneck. Then the RTprop filter 
opportunistically picks up these RTprop measurements, 
and RTProp refreshes without requiring ProbeRTT. This 
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way, flows typically need only pay the 2 percent penalty if 
there are multiple bulk flows busy sending over the entire 
RTProp window.

STARTUP BEHAVIOR
When a BBR flow starts up, it performs its first (and 
most rapid) sequential probe/drain process. Network-link 
bandwidths span a range of 1012—from a few bits to 100 
gigabits per second. To learn BtlBw, given this huge range 
to explore, BBR does a binary search of the rate space. This 
finds BtlBw very quickly (log2BDP round trips) but at the 
expense of creating a 2BDP queue on the final step of the 
search. BBR’s Startup state does this search and then the 
Drain state drains the resulting queue.

First, Startup grows the sending rate exponentially, 
doubling it each round. To achieve this rapid probing in the 
smoothest possible fashion, in Startup the pacing_gain and 
cwnd_gain are set to 2/ln2, the minimum value that will 
allow the sending rate to double each round. Once the pipe 
is full, the cwnd_gain bounds the queue to (cwnd_gain - 1) 
x BDP.

During Startup, BBR estimates whether the pipe is full 
by looking for a plateau in the BtlBw estimate. If it notices 
that there are several (three) rounds where attempts to 
double the delivery rate actually result in little increase 
(less than 25 percent), then it estimates that it has reached 
BtlBw and exits Startup and enters Drain. BBR waits three 
rounds in order to have solid evidence that the sender is 
not detecting a delivery-rate plateau that was temporarily 
imposed by the receive window. Allowing three rounds 
provides time for the receiver’s receive-window autotuning 
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to open up the receive window and for the BBR sender to 
realize that BtlBw should be higher: in the first round the 
receive-window autotuning algorithm grows the receive 
window; in the second round the sender fills the higher 
receive window; in the third round the sender gets higher 
delivery-rate samples. This three-round threshold was 
validated by YouTube experimental data.

In Drain, BBR aims to quickly drain any queue created in 
Startup by switching to a pacing_gain that is the inverse 
of the value used during Startup, which drains the queue in 
one round. When the number of packets in flight matches 
the estimated BDP, meaning BBR estimates that the queue 
has been fully drained but the pipe is still full, then BBR 
leaves Drain and enters ProbeBW.

Note that BBR’s Startup and CUBIC’s slow start both 
explore the bottleneck capacity exponentially, doubling 
their sending rate each round; they differ in major ways, 
however. First, BBR is more robust in discovering available 
bandwidth, since it does not exit the search upon packet 
loss or (as in CUBIC’s Hystart10) delay increases. Second, 
BBR smoothly accelerates its sending rate, while within 
every round CUBIC (even with pacing) sends a burst 
of packets and then imposes a gap of silence. Figure 4 
demonstrates the number of packets in flight and the RTT 
observed on each acknowledgment for BBR and CUBIC.

REACTING TO TRANSIENTS
The network path and traffic traveling over it can make 
sudden dramatic changes. To adapt to these smoothly and 
robustly, and reduce packet losses in such cases, BBR uses 
a number of strategies to implement the core model. First, 
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BBR treats cwnd_gain x BDP as a target that the current 
cwnd approaches cautiously from below, increasing cwnd 
by no more than the amount of data acknowledged at any 
time. Second, upon a retransmission timeout, meaning 
the sender thinks all in-flight packets are lost, BBR 
conservatively reduces cwnd to one packet and sends 
a single packet (just like loss-based congestion-control 
algorithms such as CUBIC). Finally, when the sender 
detects packet loss but there are still packets in flight, on 
the first round of the loss-repair process BBR temporarily 
reduces the sending rate to match the current delivery 
rate; on second and later rounds of loss repair it ensures 
the sending rate never exceeds twice the current delivery 
rate. This significantly reduces transient losses when BBR 
encounters policers or competes with other flows on a 
BDP-scale buffer.

The authors are members of Google’s make-tcp-fast project, 
whose goal is to evolve Internet transport via fundamental 
research and open source software. Project contributions 
include TFO (TCP Fast Open), TLP (Tail Loss Probe), RACK loss 
recovery, fq/pacing, and a large fraction of the git commits to 
the Linux kernel TCP code for the past five years.
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